References
The following is a non-comprehensive list of works used in the development of mpmath
or cited for examples or mathematical definitions used in this documentation.
References not listed here can be found in the source code.
[AbramowitzStegun] | M Abramowitz & I Stegun. Handbook of Mathematical Functions, 9th Ed., Tenth Printing, December 1972, with corrections |
[BenderOrszag] | C M Bender & S A Orszag. Advanced Mathematical Methods for
Scientists and Engineers, Springer 1999 |
[BorweinBailey] | J Borwein, D H Bailey & R Girgensohn. Experimentation in Mathematics - Computational Paths to Discovery, A K Peters, 2003 |
[BorweinBorwein] | J Borwein & P B Borwein. Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity, Wiley 1987 |
[CabralRosetti] | L G Cabral-Rosetti & M A Sanchis-Lozano. “Appell Functions and the Scalar One-Loop Three-point Integrals in Feynman Diagrams”. http://arxiv.org/abs/hep-ph/0206081 |
[GradshteynRyzhik] | I S Gradshteyn & I M Ryzhik, A Jeffrey & D Zwillinger (eds.), Table of Integrals, Series and Products, Seventh edition (2007), Elsevier |
[GravesMorris] | P R Graves-Morris, D E Roberts & A Salam. “The epsilon algorithm and related topics”, Journal of Computational and Applied Mathematics, Volume 122, Issue 1-2 (October 2000) |
[Slater] | L J Slater. Generalized Hypergeometric Functions. Cambridge University Press, 1966 |
[Spouge] | J L Spouge. “Computation of the gamma, digamma, and trigamma functions”, SIAM J. Numer. Anal. Vol. 31, No. 3, pp. 931-944, June 1994. |
[SrivastavaKarlsson] | H M Srivastava & P W Karlsson. Multiple Gaussian Hypergeometric Series. Ellis Horwood, 1985. |
[WhittakerWatson] | E T Whittaker & G N Watson. A Course of Modern Analysis. 4th Ed. 1946
Cambridge University Press |