Return random floats in the half-open interval [0.0, 1.0).
Results are from the “continuous uniform” distribution over the stated interval. To sample Unif[a, b), b > a multiply the output of random_sample by (b-a) and add a:
(b - a) * random_sample() + a
Parameters: | size : int or tuple of ints, optional
|
---|---|
Returns: | out : float or ndarray of floats
|
Examples
>>> np.random.random_sample()
0.47108547995356098
>>> type(np.random.random_sample())
<type 'float'>
>>> np.random.random_sample((5,))
array([ 0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428])
Three-by-two array of random numbers from [-5, 0):
>>> 5 * np.random.random_sample((3, 2)) - 5
array([[-3.99149989, -0.52338984],
[-2.99091858, -0.79479508],
[-1.23204345, -1.75224494]])